Matrix Representation of Quantum Gates
نویسنده
چکیده
The field of quantum computing is growing rapidly and there is a surprisingly large literature. Research in this area includes the design of quantum reversible circuits and developing quantum algorithms for the models of quantum computing. This paper is focused on representing quantum reversible gates in matrix form. In turn these matrices can be used to develop quantum circuits with help of K-Map. Also this paper gives the historical development of quantum algorithms and basics concepts in quantum compuation.
منابع مشابه
Quantum logic as a sum over classical logic gates
It is shown that certain natural quantum logic gates, i.e. unitary time evolution matrices for spin2 quantum spins, can be represented as sums, with appropriate phases, over classical logic gates, in a direct analogy with the Feynman path integral representation of quantum mechanics. On the other hand, it is shown that a natural quantum gate obtained by analytically continuing the transfer matr...
متن کاملImplementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملNovel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata
Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...
متن کاملReversible Modified Reconstructability Analysis of Boolean Circuits and Its Quantum Computation
Modified Reconstructability Analysis (MRA) can be realized reversibly by utilizing Boolean reversible (3,3) logic gates that are universal in two arguments. The quantum computation of the reversible MRA circuits is also introduced. The reversible MRA transformations are given a quantum form by using the normal matrix representation of such gates. The MRA-based quantum decomposition may play an ...
متن کاملEfficient decomposition of quantum gates.
Optimal implementation of quantum gates is crucial for designing a quantum computer. We consider the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit gates and yet is equivalent with the multiqubit gate. In the second step of the optimization, ...
متن کامل